Registration No.
23320

-Technical Report-

APPROXIMATING SMOOTH STEP FUNCTIONS
USING PARTIAL FOURIER SERIES SUMS

*kkkk

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the Department of the Army (DoA). The
opinions of the authors expressed herein do not necessarily state or reflect those of the United States
Government or the DoA, and shall not be used for advertising or product endorsement purposes.

kkkkk

UNCLASSIFIED: Distribution Statement A.
Approved for public release; distribution is unlimited.

U.S. Army Tank Automotive Research,
Development, and Engineering Center

September 2012 Detroit Arsenal

Warren, Michigan 48397-5000

TARDEC Technical Report No. 23320
September 2012

APPROXIMATING SMOOTH STEP FUNCTIONS USING
PARTIAL FOURIER SERIES SUMS

W. Bylsma

Dynamics and Structures

U.S. Army Research, Development and Engineering Command (RDECOM)

U.S. Army Tank-automotive and Armaments Research, Development and Engineering Center (TARDEC)
Detroit Arsenal

ATTN: RDTA-RS/MS157

6501 East 11 Mile Road

Warren, Michigan 48397-5000

*kkk*k

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the Department of the Army (DoA).
The opinions of the authors expressed herein do not necessarily state or reflect those of the United
States Government or the DoA, and shall not be used for advertising or product endorsement purposes.

*k*k*x*k

UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE OMB NG oA 0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
09-17-2012 TECHNICAL 2012
APPROXIMATING SMOOTH STEP FUNCTIONS USING PARTIAL FOURIER 5a. CONTRACT NUMBER

SERIES SUMS

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
WESLEY BYLSMA

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
DYNAMICS AND STRUCTURES-US ARMY RDECOM/TARDEC NUMBER

ATTN: RDTA-RS/MS157

6501 E 11 MILE RD 23320

WARREN, M1 48397-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution Statement A: Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report documents several continuous functions that can approximate a discrete step
function. The functions considered include the cosine, cubic polynomial, bezier polynomial,
and hyperbolic tangent. Based on the error condition used, the Hyperbolic Tangent (Tanh) and
Cosine functions provide the “best” approximations depending on the degree of smoothness
desired.

15. SUBJECT TERMS
smooth step, partial sum, Fourier series, cosine, cubic polynomial, bezier polynomial,
hyperbolic tangent

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Wesley Bylsma
a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 19b. TELEPHONE NUMBER (include area
Unclassiftied | Unclassified | Unclassified 36 code)
586-282-4104

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

CONTENTS (BY TITLE)

LOINTRODUCTIONooiiiiiii i bbbt 1
2.0 FOURIER REPRESENTATION OF SIGNALS ..o 1
3.0 DIRECT VERSUS NUMERICAL INTEGRATION ..ottt 3
4.0 ERROR CRITERIA.o ettt r e nr e nre e ene 4
SUO COSINE ... e R 7
6.0 CUBIC POLYNOMIAL ..ottt bbb r et 10
7.0 BEZIER POLYNOMIAL ..ottt ar e 12
8.0 HYPERBOLIC TANGENT ..ot e 15
9.0 RESULTS AND SUMMARY ..ottt e 17
REFERENGCESo et r bbb 24
APPENDIX A.1 - INTEGRATION DIFFERENCES.........cccccooiiii e 25
APPENDIX A.2 - PARTIAL FOURIER SERIES SUMScccooiii i 26
APPENDIX A.3 - ERROR RESULTS COMPUTATIONccooiiiiiiiicineeeneese e 29
APPENDIX A.4 — MATLAB FUNCTION EXAMPLES........c oo 31

APPENDIX A.5 - APPROXIMATION EXAMPLES - COSINE ..o 32

APPROXIMATING SMOOTH STEP FUNCTIONS USING
PARTIAL FOURIER SERIES SUMS

TARDEC Technical Report No. 23320
September 2012

1.0 INTRODUCTION

This report documents several continuous functions that can approximate the transition between different
constant levels of a signal or step function. The desire to avoid abrupt changes in signal levels will be
demonstrated. Figure 1 illustrates the problem where a continuous transition is sought from level L, to L,
between -¢ and +&. While this has been done in [1] the affects on the signal have never been clearly
demonstrated.

r

Figure 1 — Signal Levels and Transition Space

The continuous functions that will be considered are the cosine, cubic polynomial, Bezier polynomial, and
hyperbolic tangent.

2.0 FOURIER REPRESENTATION OF SIGNALS

Before analyzing the individual functions mentioned in Section 1.0, a brief review of Fourier theory is
appropriate. For periodic signals the Fourier representation is

x(t) = Z(ancos nwyt + b, sin nwyt)

n=0
1)

where (T is the length of one period)

(2)

and noting that the summation (to infinity) will be relaxed to a partial sum (a large number of terms) that

closely approximates the original signal. As outlined in [2], with the identities

sin@ = %](ejg —eJ9)

1, . .
cosf = E(efe +e779)

a complex number representation of the Fourier sum is defined as

[ee]
x(t) = Z c,e/mwot
n=—oo
with
T jbn
n 2
aTl +]bn
Ch=Cpn= >
Co = Q-

For even functions
a, = 2cp, b, = 0.
From (5) ([2], pg. 21) the Fourier coefficients can be obtained from the original signal as

1 (T2 .
Cm = —f x(t)e Imwotdt

T -T/2
For the periodic square pulse shown in Figure 2 the Fourier coefficients are

1 (%2 —jomnt d 1 —j2mnt
= — T t = T
n Tf_r/ze —j27m<e)

T/2 T

T
= —sinc n? =d sincnd

-T/2

3)

(4)

(5)

(6)

(7)
(8)

(9)

(10)

where d = t/T. This will be used as the test function to determine the affects the continuous step
functions have on the Fourier representation of the signal and its approximation in the interval of interest.

I

N
NS

¥
Figure 2 — Square Pulse Train Definition (ref. [2])

3.0 DIRECT VERSUS NUMERICAL INTEGRATION

The four functions mentioned in Section 1.0 increase the complexity of the integration in (10) needed to
obtain a closed form solution for the Fourier coefficients. Here we pause to investigate the feasibility of
obtaining the coefficients by numerical integration. Using MATLAB (and its notation, see [3]) to define the
resulting Fourier coefficients in (10) as

Closed Form
cn=(2)*d*sinc(n*d)

Direct
di=(2)*real ((exp(—j*2*pi()*n*(tlarlu/Z)/T)/(—j*Z*pi()*n)) - (exp(~
1*2*piQ*n*(-tau/2)/T)/ (-3*2*piOQ*n)))

Numerical
ni=(2)*1/T*real (trapz(exp(-j*2*piOQ*n.*t/T)))*dt

the maximum error for direct and numerical integration (using trapezoidal integration (trapz)) is shown in
Figure 3. The maximum error is defined as the maximum difference between the closed form solution for
a 50 term partial Fourier series sum at each time step size. The initial maximum error was set to the
machine precision epsilon (eps = 2.2204e-16). The results indicate that with small time steps, less than
0.001 (1e-3), numerical integration is an acceptable method to obtain the Fourier coefficients. Time steps
less than 1-e6 increase the computational time and memory requirements significantly. For details of the
computation see Appendix A.1 — Integration Differences.

Integration Error

18.00
16.00

14.00

10.00 7
8.00 / Numerical
6.00 / — Direct
4.00 pd

2.00 //

0 1 2 3 4 5 6 7
-log10(timestep)

)

[y
g
o
o

-log10(error

0.00

Figure 3 — Fourier Coefficient Integration Error Comparison - Numerical and Direct

4.0 ERROR CRITERIA

In considering the “best” continuous function approximation to the discrete step, two points need to be
considered: 1) Smoothness and 2) Accuracy. The trade-off between the two is reflected in a fewer
number of Fourier series terms needed to reach a “good” approximation for smooth signals versus the
reduced accuracy the smooth signal represents the non-smooth signal (a discrete step in this case) that
is being approximated. In order to capture this three error terms are defined

el = discrete step partial fourier series sum (N) — discrete step

e2 = smooth step partial fourier series sum (N) — smooth step (epsilon)

e3 = smooth step (epsilon) — discrete step
(11)

Note the dependencies in the error on---N, the number of Fourier series terms, and epsilon, the distance
allowed for smoothing the discrete transition. In short, el and e2 represent the error between what is
trying to be approximated with a partial Fourier series sum and e3 represents the difference between the
discrete and smoothed representations before each is approximated with a partial Fourier series sum.

With these definitions, the criteria for selecting the “best” smooth approximation is defined when

e2(N,&) + e3(e) < el(N)
(12)

expressed as a percentage of the pulse area. This criteria gives an upper bound, dependent on N and
epsilon.

Figures 4 and 5 show examples of the smooth step functions for epsilon at 10% and 50% of tau
respectively. For the examples in this report the parameters (period length, pulse width, number of terms)
for Figure 2 are

T =251t=125N = 150.

[UEY
No

S
[REN

0.8
Step
——Cosine
0.6 .
—Cubic
—Bezier
0-4 —Tanh
02

'‘—‘—-_
(e}
—

-15 -10 -5 0 5 10 15

Figure 4 — Smooth Step Functions with epsilon equal to 10% of the pulse width (tau).

Figure 6 shows a zoomed in right side of Figure 5.

1.2
08
——Step
—Cosine
0.6
V \} —— Cubic
/ \ — Bezier
0-4 —Tanh
0.2
-15 -10 -5 0 5 15

Figure 5 — Smooth Step Functions with epsilon equal to 50% of the pulse width (tau).

1.2
1
0.8
Step
—Cosine
0.6
—Cubic
— Bezier
0.4 —Tanh
0.2
0 T T T I I |
0 2 4 6 8 10 12

Figure 6 — Zoomed Figure 5

Table 1 shows the relative difference between the smooth step functions for the two cases of epsilon.

Table 1 —e3 Error

. Error (% of pulse area)
0,
Sy, ¢ @i Cosine Cubic Bezier Tanh
10 7.2676 7.5000 4.0000 2.5205
50 36.3380 37.5000 20.000 12.6024

The values in Table 1 correlate with Figure 6 and suggest the “best” smooth step approximation rank
order to be tanh, Bezier, cosine, and cubic in terms of e3 error.

5.0 COSINE

The cosine function is plotted in Figure 7 for a domain of 0 to 2m (1 period). Looking at the first half of the
interval there is a smooth transition between 1 and -1. With translation and scaling the function can be
modified to make a smooth step between defined levels as in Figure 1.

Cosine

)

(92}

= -
b -

U2 I
h —

n\‘ -

Angle [radians]

Figure 7 — Cosine Function

Each side of the center pulse in Figure 2 will use the first half (right side) or second half (left side) of the
cosine period. Scaling (or normalizing) the amplitude to obtain an output value between zero and one is
accomplished by adding 1 and multiplying by 0.5 as

1
> (1 + cosnwyt)
(13)
Translation is used to transform the time scale for the square pulse into the desired half of the cosine

function time scale. With t, being the cosine function time scale, for the right side of the center square
pulse the desired shift is

0<t,<T/2
0<t. <Ze
0<t—(z—£)<2£
2
(14)
while for the left side it is
T/2<t,<T
2e <t.<4¢
2£<t—(—3—3£) < 4
2
(15)

A more straight forward approach is to use the shift in (14) for both sides but change the sign after the
one in (13).

Implementation specifics are denoted using MATLAB notation. From (14)

T
E=2£ ->T =4¢
(16)

the cosine period is

% set period
tc = 4*epi;

For the specific example in this report with the following parameters

%=== parameters
T = 25; % period length
tau = 12.5; % square pulse width
d = tau/T; % duty ratio
dt = 0.001; % time step
t = [-50:dt:50]; % time vector
iierr = find(abs(t) < T/2);

%=== loop for each epsilon
for epi =[0.01:.01:.1,.5]*tau, % percentage of tau

the cosine step function is defined as

ii = find(abs(t + tau/2) <= epi);
stepm(ii) = 0.5 * (1 - cos((@*pi/tc)*(t(ii) - (-tau/2-epi))));
ii = find(abs(t - tau/2) <= epi);
stepm(ii) = 0.5 * (1 + cos((@*pi/tc)*(t(ii) - (tau/2-epi))));

Calculation of the Fourier coefficients is based on (9) and (10)
trange = find ((t >= -tau/2-epi) & (t <= tau/2+epi));

coef = trapz(stepm(trange).*exp(-j*2*pi*n.*t(trange)/T));
coef=1/T*real (coef)*dt;

% handle constant term separate

it (n ==0),

y(cnt,:) = coef + 0*t;
else

y(cnt,:) = y(ent-1,:) + 2 * coef*cos(n*2*pi/T.*t);
end

cnt = cnt + 1;

% compute discrete step coefficients directly
if (n==0),
yo(cnto,:) = d * sinc(n*d) * cos(n*2*pi/T.*t);
else
yo(cnto,:) = yo(cnto-1,:) + 2 * d*sinc(n*d)*cos(n*2*pi/T.*t);
end
cnto = cnto + 1;

The error computation follows from (11)

% continuous step
% cosine
err2 = trapz(abs(y(nnum+1,iierr) - stepm(iierr))) * dt;

% difference
% cosine
err3 = trapz(abs(stepm(iierr) - step(iierr))) * dt;

Figure 8 shows the cosine function partial Fourier series sum error results for el (red, center), e2 (green,
lower left), and e2+e3 (blue, upper right) for epsilon as a percentage of tau. Note that el is a function of
N only, and e3 is a function of epsilon only. As epsilon increases, the e2 error is reduced quickly for a
small number of terms. For e2+e3, as epsilon increases, e3 begins to dominate and reduces the number
of terms at which the condition in (12) is satisfied. The “squiggles” in the curves are attributed to the odd
coefficients being zero which results in a constant sum for two consecutive terms. This principle is
described in [4] for the normalized sinc function.

Cosine

12
11
10 L

= 9 k

S N »

g 5 |

26 L

Qg 5 \\L_\E ——— e2ie3

s 4 \k;ﬁé%%

5 | SN

w3 = ~
IR U S o =
1 Q\:’L{\w\ aM. o= — er
0 T ‘ E\;QTL,; ~ T~ TTr——]

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
N [number of terms]

Figure 8 — Cosine Function Partial Fourier Series Sum Error

6.0 CUBIC POLYNOMIAL

The cubic polynomial function

y=ax3>+bx*+cx+d
17)

is plotted in Figure 9 for a domain of O to 1 that provides a smooth transition between 0 and 1 assuming
the derivative at each end point is equal to zero. With these conditions

y(0)=0,y(1) = 1,¥'(0) =0,y'(1) = 0.
we arrive at

y = —2x3 + 3x% = xx(3 — 2x).
(18)

As described in [5] and [6], the domain is hormalized using a “clamping” function defined below

% clamp
function y = clamp(x,min,max)

y = x;

% Blimit x values to min/max
imax = find(y > max);
y(imax) = max;

imin = find(y < min);
y(imin) = min;

10

which is used in defining the cubic polynomial or “smooth step” as

% smoothstep
function y = smoothstep(x,min,max)

% normalize (O to 1) using min/max in domain of X
XX = (x-min)/(max-min);

s_min = 0.0;

s_max = 1.0;

% set domain limits
y = clamp(xx, s_min, s_max);

% return value
y=y.*y .* @ - 2%);

The left side of the center pulse in Figure 2 will use the normalized domain between +/- epsilon and the
right side will use a reversed normalized domain (or subtract the left side result from one) with appropriate
amplitude scaling (in this case just one).

Cubic Polynomial
1.5

0.5 /
/

O I I I I | 1
0 0.2 0.4 0.6 0.8 1 1.2

Distance [normalized length]

Figure 9 — Cubic Polynomial Function

With the same parameters and definitions as outlined in Section 5.0, with exceptions called out, the cubic
polynomial step function is defined as

% cubic
ii = find(abs(t+tau/2) <= epi);
stepm(ii) = smoothstep(t(ii), min(t(ii)), max(e(ii)));
ii = find(abs(t-tau/2) <= epi) ;
i = t(in);
rt = iii(end:-1:1);
stepm(ii) = smoothstep(rt, min(rt), max(rt));
% stepm(ii) = 1 - smoothstep(t(ii), min(t(ii)), max(t(ii)));

Figure 10 shows the cubic polynomial partial Fourier series sum error results. Similar results are obtained
as in Section 5.0.

11

Cubic Polynomial

12

11

10
— 9
o
5 8
)]
wn 7
2.
“
o\°° > v 5 —]
ARV~
o o3

, L N L e~

s T

L [~ \xxh
0 ———
0O 10 20 3|0 40 50 60 70 80 90 100 110 120 130 140 150 160
N [number of terms]

Figure 10 — Cubic Polynomial Function Partial Fourier Series Sum Error

7.0 BEZIER POLYNOMIAL

The Bezier polynomial function is similar to the cubic polynomial in Section 6.0 except that both x and y
values are defined as a function of parameter t with a domain of O to 1

X = a,td + bt +c it +d,

y=ay,t®+b,t* +cyt+d,
(19)

Four points, PO, P1, P2, and P3 of (x,y), are needed to solve for each variable as discussed in [7]. The
procedure is the same as for the cubic polynomial in Section 6.0 except that the slopes at the end points
are defined in terms of the parameter t as

x(0) =d, = POx
x(1) =a,+by+c,+d, =P3x

rise _ P1x — POx

x'(0) = ¢, = slope = ey To = 3(P1x — P0x)
3
P3x — P2x
x'(1) =3a, +2by + ¢, = — = 3(P3x — P2x)
1-%
3

(20).

12

The same steps are followed to determine y. In matrix form, the coefficients defined in terms of the points

are
Ay -1 3 -3 1][POx
by]_|3 -6 3 0f[Plx
Cx -3 3 0 O0f|P2x
dy 1 0 0 ollp3x
(21).
With the points
PO = (0,0), P1 = (0.8,0), P2 = (0.2,1.0), P3 = (1.0,1.0)
(22)

the coefficients for x and y are (2.8, -4.2, 2.4,0) and (-2, 3, 0, 0), respectively. Figure 11 shows the
difference between the Bezier and cubic polynomials. Adjustments to the point

Bezier Polynomial

1.5
1
—BEIZER
0.5
—CUBIC
0 ' ' | | | | POLYNOMIAL

0 0.2 0.4 0.6 0.8 1 1.2
Distance [normalized length]

Figure 11 — Bezier Polynomial Function

definitions allow for manipulation of the curve shape. For example, redefining the points in (22) to
P1 = (0.33,0),P2 = (0.66,1.0)

the Bezier becomes the cubic polynomial with x coefficients of (0.01, 0, 0.99, 0). Changes to the “smooth
step” function in Section 6.0, to allow for more flexibility with the Bezier polynomial, are included below.

% smoothstepbez
function y = smoothstepbez(x,min,max, ind)

if (ind == "x")
p=[0 0.8 0.2 1]°7;
elseif (ind == "y")

p=[0 0 1 1]";
else

p=[0 .33 .66 1]"; % cubic
end

13

% normalize (O to 1) using min/max in domain of X
XX = (X-min)/(max-min);

s_min
S_max

1:0;

% set domain limits
y = clamp(xx,s_min,s_max);

% return value
y = c(1)*y."3 + c(2*y-"2 + c(3)*y + c(4);

As for the cubic polynomial in Section 6.0, the left side of the center pulse in Figure 2 will use the
normalized domain between +/- epsilon and the right side will use a reversed normalized domain (or
subtract the left side result from one) with appropriate amplitude scaling.

With the same parameters and definitions as outlined in Section 5.0, with exceptions called out, the
Bezier polynomial step function is defined as

% Bezier
Xt = t;
ii = find(abs(t + tau/2) <= epi);
xt_start = t(1i(1));
xt_len = t(ii(end)) - t(i());

% define x domain
xt_i = xt_start + xt_len * smoothstepbez(t(ii), min(t(ii)), max(t(ii)), "x");
xt = [xt(l:ii(1)-1), xt_i, xt(ii(end)+1:end)];

% interpolate t, using X, to get y
stepm(ii) = interpl(xt(ii), smoothstepbez(t(ii), min(t(ii)), max(t(ii)), "y"), t(ii),
“linear®, "extrap®);

ii = find(abs(t - tau/2) <= epi);
i = t(in);

rt = iii(end:-1:1);

xrt_start = rt(l);

xrt_len = rt(end) - rt(1);

% define reverse x domain
Xrt = xrt_start + xrt_len * smoothstepbez(rt, min(rt), max(rt), "x");
xt = [xe(l:ii(1)-1), xrt, xt(ii(end)+1l:end)];

% interpolate t, using reverse x, to get y
stepm(ii) = interpl(xt(ii), smoothstepbez(rt, min(rt), max(rt), "y"), t(ii), "linear”,
“extrap®);
% stepm(ii) = 1 - interpl(xt(ii), smoothstepbez(t(ii), min(t(ii)), max(e(ii)), “y"), t(ii),
“linear®, “extrap®);

In this case, because x is also defined as a function of the independent parameter t, the interpolation
function is used to obtain the associated x value for the time grid which is used as the independent
variable for the other step functions.

Figure 12 shows the Bezier polynomial partial Fourier series sum error results. Differences are seen
between the cosine and cubic functions in that while the e3 error is smaller, more terms are needed to
reduce the e2 error for larger values of epsilon as a percentage of tau. However, all the e2 errors are
less than el.

14

Bezier Polynomial

12

11

10
3. B
5 8
2 7 i
2 . i
G
s L
Pg' 4 H\\\L'\\\\ \\— —
- \ :E

NN . e —
; K%%QEIQEE:RH —
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
N [number of terms]

8.0 HYPERBOLIC TANGENT

Figure 12 — Bezier Polynomial Function Partial Fourier Series Sum Error

The hyperbolic tangent (tanh) function is plotted in Figure 13. Looking at the center there is a smooth
transition between 1 and -1---although the function approaches 1 (-1) as the domain approaches infinity (-
infinity). As with the cosine function in Section 5.0, with translation and scaling the tanh function can be

modified to make a smooth step between defined levels as in Figure 1.

Hyperbolic Tangent
1
L.J
1
0 |
U.J
a)
[[I [v [I [
8 -6 -4 2 05/ 0 2 4 6

)
C
L\

gt 8

n

1
Angle [radians]

Figure 13 — Hyperbolic Tangent Function

15

An output value between zero and one is accomplished by adding 1 and multiplying by 0.5 as

1
3 (1 + tanh bx)
(23)

The sign after the one in (23) is used to change the direction of the level transition.

Due to machine precision the tanh function will achieve the value of 1 in some interval, even though it
approaches infinity in theory. Matching the transition space in Figure 1 to that of the tanh function
requires a scaling factor, b, which can be found from the test case below

% b.m

t [-10:.1:10]; % time scale

y = find(abs(round(tanh(t)*10000)/10000) >= 1.0);
minC abs(t(y)))

which gives 5.3. With the ranges

—e<x<Ee€
—53<bx <53

then

where the value of 5.3 was increased to provide some margin of safety.

With the same parameters and definitions as outlined in Section 5.0, with exceptions called out, the
hyperbolic tangent step function with the scaling factor

% tanh
b = 5.5/epi;

is defined as

% tanh
ii = find(abs(t + tau/2) <= epi);
stepm(ii) = 0.5 * (1 + tanh(b*(t(ii) - (-tau/2))));
ii =Find(abs(t - tau/2) <= epi) ;
stepm(ii) = 0.5 * (1 - tanh(b*(t(ii) - (tau/2))));

Figure 14 shows the hyperbolic tangent partial Fourier series sum error results. The e3 error is smaller
and the e2+e3 curves are converging to the el error as tanh more closely approximates the discrete step
as indicated by Table 1 under the condition in (12). As compared to the cosine and cubic functions, more
terms are required to reduce the e2 error.

As a side note, another use for the tanh function, which is not covered in detail here, is for blending
functions to provide a smooth transition between them as described in [8]. With s(x) defined in (23) the
result is

h(x) = s()f1(x) + (1 = () f(x).

16

Hyperbolic Tangent
12
11
10
-g- 9
5 8
27
2
. b
(]
] ° fais
5 4
e %E
2 ——
1 |
0 3
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
N [number of terms]

Figure 14 — Hyperbolic Tangent Function Partial Fourier Series Sum Error

9.0 RESULTS AND SUMMARY

The partial Fourier series sums error results (Figures 8, 10, 12, and 14) for the cosine, cubic polynomial,
Bezier polynomial, and hyperbolic tangent step functions, respectively, demonstrate that the smoother the
function (in terms of e3, larger e3 indicates smoother) the more quickly the error is reduced for a smaller
number of Fourier series terms. Computation of the coefficient terms is outlined in Appendix A.2. The
error data was processed to determine the maximum number of terms at which condition (12) was met.
This procedure is outlined in Appendix A.3. The summarized data is presented in Figure 15. Note that
since the amplitude of the square pulse in Figure 2 is one, the percentage of tau is equivalent to the
percentage of the pulse area. As epsilon increases the size of €3 does also and is independent of the
number of terms N (constant as a function of N). This pushes the intersection point (between the e2+e3
and el) to a lower (leftward) number of terms (N) as Figures 10 and 14 demonstrate. The continuous
step functions that have the largest e3 error (see Table 1) are restricted to the lowest number of partial
sum terms, although reducing the error more quickly.

Figures 16, 17, and 18 show the el, e2, and e3 errors, respectively, at the error limit condition in Figure
15 (N is not shown on the plots). Details for each function are included in Table 2.

The el error, in Figure 16, is greater than 1% in all cases and follows the same order as in Figure 15
where for fewer number of terms the error is larger (epsilon increases => e3 increases => N decreases
=> el increases).

The e2 error, in Figure 17, is less than 1% for all epsilon except for the Bezier Polynomial (which is
greater than 1% for epsilon greater than 8%), but still less than the associated el error. This indicates
that at the error limit condition the continuous step functions have smaller approximation error than the
discrete step partial Fourier series sums.

17

The order change in the e2 error of Figure 17 is explained in Figures 18 and 19 by the cross-over of the
Bezier and tanh functions for some intermediate value of epsilon between 1% and 10%. At this value of
epsilon, the e2 error decreases quicker than the Bezier function for larger values of N. This illustrates
one advantage of the tanh function for an epsilon greater than 4%.

Error Condition Limit

160 |
140 N\ T

120 \

g \
2100 AN
S =o—-Cosine
= 80)
o8 —Cubic
g 60 Besi
2 ezier
> 40 =«Tanh
20 ———
0
0 2 4 6 8 10 12

Epsilon [% of pulse area]

Figure 15 —Partial Fourier Series Sums Error Results

The e3 error, in Figure 18, has constant slope consistent with Table 1 as it is independent of N.

The e2+e3 error in Figure 21 shows that the e3 error order of continuous step functions is preserved,
except for small epsilon (see Figure 17).

From this analysis and the error criteria in (12), we can conclude that the overall “best” continuous step

function approximation to a discrete step is the Hyperbolic Tangent (tanh) function for epsilon greater
than approximately 1.5% and the cosine function for epsilon less than approximately 1.25%.

Future work in this area would be to analyze the errors for epsilon less than 1% and the transition area
between epsilon of 1% to 1.5%.

18

el Error

10
9
'El 8 //>
(J]
5 7 //
2 6 .
3 . / P ——Cosine
S —Cubic
Qg . /
T 3 —+—Bezier
o K
w2 ==Tanh
‘__)/X
1
0
0 2 4 6 8 10 12
Epsilon [% of pulse area]
Figure 16 —e1 Error (for N in Fig. 15)
e2 Error
1.5
= 1.25 Y
S P
©
@ 1
S ——Cosine
f_" 0.75 A]
5] \ / ——Cubic
X .
— 0.5 A\ —+—Bezier
e \ ——
e N\
. /
0 . e X
2 4 6 8 10 12

Epsilon [% of pulse area]

Figure 17 —e2 Error (for N in Fig. 15)

19

Error [% of pulse area]

[EY
o

O P N W B U1 OO NN 00 ©

e3 Error

—

4 6 8 10
Epsilon [% of pulse area]

12

=o—-Cosine
——Cubic
—i—Bezier

=Tanh

Figure 18 —e3 Error (for N in Fig. 15)

20

Table 2 — Maximum N Meeting Error Condition (12) and €1, e2, e3 Values

Function epsilon N el e2 e3
Cosine 1 150 1.209537 0.039066 0.726777
2 118 1.485054 0.029608 1.453529
3 72 2.256793 0.071739 2.180287
4 50 3.061496 0.132045 2.907046
5 38 3.841763 0.187851 3.633806
6 30 4.662628 0.243676 4.360566
7 24 5.587874 0.289478 5.087326
8 20 6.469539 0.312949 5.814086
9 18 7.036793 0.349583 6.540846
10 16 7.725602 0.377597 7.267606
Cubic 1 150 1.209537 0.059059 0.750016
2 112 1.552625 0.0463 1.500008
3 68 2.367846 0.107298 2.250005
4 46 3.280907 0.201364 3.000004
5 36 4.016389 0.251514 3.750003
6 28 4.931978 0.319425 4.500003
7 22 5.993539 0.353315 5.250002
8 20 6.469539 0.405416 6.000002
9 16 7.725602 0.396347 6.750002
10 14 8.581817 0.426217 7.500002
Bezier 1 150 1.209537 0.509525 0.400092
2 150 1.209537 0.255185 0.800046
3 124 1.423539 0.218305 1.20003
4 86 1.942723 0.330454 1.600023
5 64 2.491377 0.465372 2.000018
6 50 3.061496 0.617477 2.400015
7 42 3.537433 0.72593 2.800013
8 34 4.209219 0.938606 3.200012
9 30 4.662628 1.041265 3.60001
10 26 5.237663 1.209506 4.000009
Tanh 1 150 1.209537 0.777596 0.252106
2 150 1.209537 0.340412 0.504124
3 150 1.209537 0.122548 0.756162
4 150 1.209537 0.040091 1.008205
5 140 1.283229 0.019434 1.260249
6 112 1.552625 0.028767 1.512295
7 94 1.801826 0.036689 1.764341
8 80 2.065102 0.047711 2.016387
9 68 2.367846 0.066982 2.268434
10 60 2.629701 0.080618 2.520481

e2 Error (Epsilon = 1%]

4.0 \ L\\\
— 3.0 &\x t\‘
3 RS
© \\\
(]
é - \\\\‘\\ —Cosine
‘.6) t__\ —— Cubic
N
= \\\\\\Q\ — Bezier
o
= \\\ \\\\ —Tanh
w10 Sy
\ ~——
x \\&
\N\
\%x
0.0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
N [number of terms]
Figure 19 —e2 Error (for N in Fig. 15, epsilon = 1%)
e2 Error (Epsilon = 10%]
1.0 \
0.8
F H
&
2 0.6
% \\ —Cosine
o
G f\ \:\ —— Cubic
X
= 0.4 \\ — Bezier
o
= \ —Tanh
0.2 \\
e \\ "~
—\%q XKXRH
0.0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

N [number of terms]

Figure 20 —e2 Error (for N in Fig. 15, epsilon = 10%)

22

Error [% of pulse area]

e2+e3 Error

N

w
&)

w

=

N
U

/,// ——Cosine

N

/ —Cubic

=
U

—i—Bezier
X

=

Tanh

o
&)

o

1 2 3 4
Epsilon [% of pulse area]

Figure 21 —e2+e3 Error (for N in Fig. 15)

23

REFERENCES

[1]
(2]

3]
[4]
[5]
[6]
[7]
(8]

ADAMS/Solver (STEP function) (http://www.mscsoftware.com).

Stark, et.al, Modern Electrical Communications, 2" Edition. Prentice Hall, NJ. ISBN 0-13-
593278-5.

MATrix LABoratory (MATLAB) (http://www.mathworks.com).

Sinc Function (http://en.wikipedia.org/wiki/Sinc_function).

Smooth Step (http://en.wikipedia.org/wiki/Smoothstep).

Clamping (http://en.wikipedia.org/wiki/Clamping).

Bezier (http://www.cs.binghamton.edu/~reckert/460/bezier.htm).

Tanh Smoothing (http://www.j-raedler.de/2010/10/smooth-transition-between-functions-with-tanh/).

24

APPENDIX A.1 — INTEGRATION DIFFERENCES

%intdiff.m

clear all
close all

%=== parameters
T =5;

tau = 1;

d = tau/T;

err = [1;

nnuml = 50;

X=X

%
%

period length
square pulse width
duty ratio

error results
number of terms

%=== loop for time step
for dt = [le-1 le-2 le-3 le-4 le-5 le-6 le-7 le-8 1le-9 le-10],

t = [-tau/2:dt:tau/2];

med
mei

eps; % max error (direct)
eps; % max error (numerical)

% loop coefficients
for n = 1:nnuml,

% closed form
cn = 2 * d*sinc(n*d);

% direct

di = 2 * ((exp(—j*2*pi*n*(tau/2)/T)/(-j*2*pi*n)) —
(exp(—J*2*pi*n*(-tau/2)/T)/(-J*2*pi*n)));

% numerical

ni = trapz(exp(-J*2*pi*n.*t/T));
ni = 2 * 1/T*real(ni)*dt;

% maximum error
med = max(abs(cn-di), med);
mei = max(abs(cn-ni), mei);

% output "term #, closed form, direct(di), err w/di, numerical(ni), error w/ni*

fprintf("%10.8F %3d %20.14F %20.14F %20.14F %20.14F %20.14Ff\n",dt,n,cn,di

end
fprintf("\n");

fprintf("max err:

fprintf("\n");

% results

%20.14F %20.14F\n",-1ogl0(med),-loglO(mei));

err = [err;[-logl0(dt),-logl0(med),-logl0(mei)]];

end

% output results

fid = fopen("intout.txt", "wt");
fprintf(Fid, "%20.14F %20.14F %20.14F\n",err");

fclose(fid)

,cn-di,ni,cn-ni);

25

APPENDIX A.2 — PARTIAL FOURIER SERIES SUMS

%pfss.m (partial Fourier series sum)

clear all

close all

%=== parameters

T = 25; % period length

tau = 12.5; % square pulse width
d = tau/T; % duty ratio

dt = 0.001; % time step

t = [-50:dt:50]; % time vector

iierr = find(abs(t) < T/2);

errout=[]; % error results
plotf = 0; % 0=no plots, l1=include plots
Y%plotf = 1;

%=== discrete step (square pulse)

step = 0*t;

ii = find(abs(t) < tau/2);
step(ii) = 1;

%=== loop for each epsilon
for epi =[0.01:.01:.1,.5]*tau, % percentage of tau

% cosine

% tc = 4*epi; %
% tanh
b = 5.5/epi;

S

set period

% define continuous step

clear ii;

stepm = 0*t;

ii = find(abs(t) < (tau/2-epi));
stepm(ii) = 1;

% cosine

% ii = find(abs(t+tau/2) <= epi);

% stepm(ii) = 0.5 * (1 - cos((@*pi/tc)*(t(ii) - (-tau/2-epi))));
% ii = find(abs(t-tau/2) <= epi);

% stepm(ii) = 0.5 * (1 + cos((@*pi/tc)*(e(ii) - (tau/2-epi))));

d(abs(t+tau/2) <= epi);

) = smoothstep(t(ii), min(t(ii)), max(t(ii)));
d(abs(t-tau/2) <= epi) ;
ii);
(e
)

smoothstep(rt, min(rt), max(rt));

% Bezier

% xt = t;

% ii = find(abs(t+tau/2) <= epi);

% xt_start = t(ii(1));

% xt_len = t(ii(end)) - t(ii());

% xt_i = xt_start + xt_len * smoothstepbez(t(ii), min(t(ii)), max(t(ii)), "x");

% xt = [xt(@:ii(1)-1), xt_i, xt(ii(end)+1l:end)];

% stepm(ii) = interpl(xt(ii), smoothstepbez(t(ii), min(e(ii)), max(t(ii)), “y"), t(ii),
“linear®, “extrap®);

% ii = find(abs(t-tau/2) <= epi);

% i = t(in);

% rt = 1ri(end:-1:1);

% xrt_start = rt(1);

% xrt_len = rt(end) - rt(l);

% xrt = xrt_start + xrt_len * smoothstepbez(rt, min(rt), max(rt), *x");

% xt = [xe(@:ii(1)-1), xrt, xt(ii(end)+l:end)];

% stepm(ii) = interpl(xt(ii), smoothstepbez(rt, min(rt), max(rt), °"y"), t(ii), “linear”,
“extrap®);

26

% tanh
ii = find(abs(t+tau/2) <= epi);
stepm(ii) = 0.5 * (1 + tanh(b*(t(ii) - (-tau/2))));
ii = find(abs(t-tau/2) <= epi) ;
stepm(ii) = 0.5 * (1 - tanh(b*(t(ii) - (tau/2))));

%

clear y yo;

cnt

cnto
nnuml

% partial sum counter (continuous step)
; % partial sum counter (discrete step)
150 % number of terms
i

trange = find ((t >= -tau/2-epi) & (t <= tau/2+epi));

% compute partial sums
for n=[0,1:nnuml],

end

% compute continuous step coefficients

% cosine/cubic/Bezier/tanh

coef = trapz(stepm(trange).*exp(-j*2*pi*n.*t(trange)/T));
coef=1/T*real (coef)*dt;

% handle constant term separate
if (n==0),
y(cnt,:) = coef + 0*t;
else
y(cnt,:) = y(ent-1,:) + 2 * coef*cos(n*2*pi/T.*t);
end
cnt = cnt + 1;

% compute discrete step coefficients directly
if (n==0),
yo(cnto,:) = d * sinc(n*d) * cos(n*2*pi/T.*t);
else
yo(cnto,:) = yo(cnto-1,:) + 2 * d*sinc(n*d)*cos(n*2*pi/T.*t);
end
cnto = cnto + 1;

% compute error results for partial sums
for nnum=10:1:nnuml,

% discrete step
errl = trapz(abs(yo(nnum+l,iierr) - step(iierr))) * dt;

% continuous step
% cosine/cubic/Bezier/tanh
err2 = trapz(abs(y(nnum+1,iierr) - stepm(iierr))) * dt;

% difference
% cosine/cubic/Bezier/tanh
err3 = trapz(abs(stepm(iierr) - step(iierr))) * dt;

% indicate when sum of error (difference) between steps (discrete vs. continuous)

% and approximation to continuous step is less than approximation to discrete
% step
if (err2+err3 < errl),
errd = 0;
else
errd = 1;
end

% results normalized as percentage of pulse area

errout = [errout;[(epi/tau)*100, nnum, (errl/tau)*100, (err2/tau)*100,
(err3/tau)*100, err4]];

fprintf("%6.2F %3d %20.14F %20.14F %20.14F %d\n",errout®);

% plot Fourier approximation results for
if (plotf == 1),

% discrete step

27

figure(l)

clf
plot(t(iierr), yo(nnum+l,iierr), "g");
hold on

plot(t(iierr), step(iierr), “r");

% continuous step

figure(2)

clf

plot(t(iierr), y(nnum+l,iierr), "g");
hold on

% cosine/cubic/Bezier/tanh

plot(t(iierr), stepm(iierr), "b");

% differences

figure(d)

clf

plot(t(iierr), yo(nnum+l,iierr) - step(iierr), "r");
hold on

% cosine/cubic/Bezier/tanh

plot(t(iierr), y(nnum+l,iierr) - stepm(iierr), "b");

% step profiles

figure(4)

clf

plot(t(iierr), step(iierr), "g");
hold on

% cosine/cubic/Bezier/tanh

plot(t(iierr), stepm(iierr), "b")
% axis([-T/2,T7/2,0,1.3])

end
end
end
% output results
fid = fopen("[cos/cub/bez/tanh]_errout”®, "wt");

fprintf(Ffid, "%6.2F %3d %20.14F %20.14F %20.14F %d\n",errout™);
fclose(fid);

28

APPENDIX A.3 — ERROR RESULTS COMPUTATION

With the error output defined as

errout = [errout;[(epi/tau)*100, nnum, (errl/tau)*100, (err2/tau)*100,

(err3/tau)*100, err4]];

% FprintfF("%6.2F %3d %20.14F %20.14F %20.14F %d\n",errout”);

the results are computed by

%

results.m
clear all;

% parameters

m_epi = 1;
m_num = 2;
m el = 3;
me2 = 4;
m e3 = 5;
m_cnt = 10;
fn = {"../cos/cos_errout”;
" ../cub/cub_errout”;
" ../bez/bez_errout”;
" ../tanh/tanh_errout”;
}:
errl = [];
err2 = [1;

for £ = 1:length(fn(:,1)),

%

read in data

yname = sprintf("%s", char(fn(f,1)))
y=dImread(yname) ;

f
c

%

igure(l)
If

loop on epsilon (% of tau)

for i = 1:m_cnt,

% get entries for epsilon
il=Find(y(:,1)==i);

% get entries for condition e2+e3 < el within given epsilon
i1l = Ffind(y(il,m_e2)+y(il,m_e3) < y(il,m_el));

% save min/max N that meets condition for each epsilon and associated el, e2, e3 error

imin = min(y(i1(il1l),m_num))

imax = max(y(i1(ill),m_num))

i2 = find (y(i1(ill),m_num) == imax);

errl = [errl;[f, &, imin, imax, y(i1(i11(i2)), m el), y(i1(i11(i2)), m_e2),
y(i1(i11(i2)), m_e3)]];

% plot error data
plot(y(il,m_num),y(il,m_el),"r");

hold on

plot(y(il,m_num),y(il,m_e2),"g");
plot(y(il,m_num),y(il,m_e2)+y(il,m _e3),"b");

% save data for el, e2, and e2+e3
err2=[err2, [f+O*y(il,m_num), i+0*y(il,m_num), y(il,m_num), y(il,m_el), y(il,m_e2),
y(il,m_e2) + y(il,m_e3)]1];

end

figure(2)
clf

for i = 1:m_cnt,

29

% get entries for file number
Jj = find(errl(:,1)==F)

% plot maximum N that meets condition e2+e3 < el
plot(errl(j.2),errl(j.3),"r")

end
end
% write error summary to file
fid = fopen(“res_errout”™,"wt");
fprintf(Ffid, "%d %d %d %d %20.14F %20.14F %20.14F\n",errl");
fclose(fid)

% write error data to file
save("res_errout_all®,"err2","-ascii","-tabs");

30

APPENDIX A.4 — MATLAB FUNCTION EXAMPLES

x=[0123456781]"

y=[0 2 -5.5 3.1 0.1 5 4 4 0]"
i=Find(y>3)

y(®)

trapz(y)

interpl(x,y,1.5)
interpl(x,y,7.5)

===results:

X =

oO~NOUBAWNEO

.0000
-5000
-1000
.1000
.0000
.0000
-0000

ADhOOWON

oO~NO B

ans =

3.1000
5.0000
4.0000
4.0000

ans

12.7000

ans

-1.7500

ans

>>

31

APPENDIX A.5 — APPROXIMATION EXAMPLES - COSINE

Discrete Step & Partial Fourier Series Sum

Cosine (epsilon = 1% and 50%, N=20)

1 9K
LJ

4L

H
D
®

o>
N
U

o>

[
D

o>
N
(6,]

5.0

-1

2.5

-1

0.0

-7,

00
\ A}

o

-5.0 -2 00 25 50 75

faTio I =y
TS

10.

.5 15.0

Time [seconds]

yo

= step

Discrete Step & Partial Fourier Series Sum

Cosine (epsilon = 1% and 50%, N=75)

1 9K
Yyae)

4L

EA

[or)
N
a

[

O]
()

[
N
U

5.0

-1

2.5

-1

0.0

-7,

n o
(@]
[en]

-5.0 -2 00 25 50 "75

falie N

10

0 12.

U. LD
Time [seconds]

yo

— tep

32

1% , N=20)

Cosine (epsilon

e stepm

—y

10.0 12,5 15.0

N
5

N

Pa¥
~ VW

IS,

o I =4
LJ

b A =
7
| g
D
o N g
Z
fa)

25
20

D\

)7

Uyu
y 50 -25 00 25 50

o/
-7

~ N

-10.0

-12.5

0

wing salias J431inoH [ellied g dais mso:c_u.ﬁou

Time [seconds]

1% , N=75)

Cosine (epsilon

o stepm

—

Q
|¥9)
i
n
N
i
Q
O
i
n
2"
..m o
wn
5 [—
o~ 3
c
o
=) 0
o 2,
LN nw LN (@) LN @) [Tol]
N D ™ LN N D NE
o B o o o o N D=
1
Q
[E_J
$ wn
~
1
Q
o)
i
1
o~
i
1
Q

wing salias J4314no4 [ellied g dais mso:c_u_m.ou

33

=20)

50%, N

Cosine (epsilon

= stepm

—y

10.0 12.5 15.0

5

7

5.0

2.5

0.0

o 1 o
U. L0

-2.5

Time [seconds]

-5.0

-7.5

-10.0

-12.5

>.0

wiNg s3113S Ja14N04 [ellied g dais snonuitiod

=75)

50%, N

Cosine (epsilon

— stepm

—y

10.0 125 135.0

5

7

50

2,5

0.0

0O-00
\vpv)

[alio I =
V. LJ

-2.5

Time [seconds]

-5.0

-7.5

-10.0

-12.5

.0

wing 3143 1314N04 [e1lied 13 dais mso::_u.%ou

34

35

20)

1%,N

Cosine (epsilon

Time [seconds]

1.0

a E o E
g 5 ¢ g
6 % o ¥
al |
Q Q
) ury
— i
L L
N N
Av — i
) o =
Mv = =
Iv_/ B < ~
Al o 2 S O
A\ LN o: N
) X
A L]
LN - T [Tp]
A‘ ~ 3 m ~
{ s 3
o n o
IS) 2 > IS
N © W @ N © W O e — 1N O 1 O un Aw n @ un
N @ o g N N T P qNe o N @ M 9 Q4 @ o o m
© o o No 5 i o= g d ¢ © 0o o oY% o o
;e 2 R
v @)
A (@]
N 9 ot
<7 g o
|
P m 1n
D ~
4
{ o .
4 o o
‘v =t —
A 1 1
) on L
1 1
Q Q
10413 WNG s3113§ J9NIN04 |enied 10413 WNS sa143s J91IN0 [enJed

—y0-Step

10.0 125 15.0 -~ ystepm

20)

50%, N

50%, N=75)

L2

00 25 50| 75

Time [seconds]

Cosine (epsilon

Cosine (epsilon

o E
v Q
g g
_st
Q
"]
i
n
{ ”
) ©
O
vl
(

\v5
Iv_/
(—————— |

1
<L o
¢
{ v
‘2
)
(o
o
595%5050:
N N N) &N N N D A
o o o o o o
AQ
Qo
< ?
{ e —
A
Pt
/v_/_
A_vO.
o
..1__
)
ol
o~
1
Q

w2 W @ Wu o
M~ LN o~ (] N n _,/.
o o o oW fa

N

QS

wn

1

y 0

~

1

Q

=)

—

1

n

-

1

o

S

40443 WNS soaliaS .—.u@.)..._sou_ |enlied

10443 WS Soluas ._0._.__‘-0"_ |enlied

36

Time [seconds]

